Saturday, December 5, 2015

Bramhgupt calculated earth's radius and Pi value

ब्रह्मगुप्त (५९८-६६८) प्रसिद्ध भारतीय गणितज्ञ थे। वे तत्कालीन गुर्जर प्रदेश (भीनमाल) के अन्तर्गत आने वाले प्रख्यात शहर उज्जैन (वर्तमान मध्य प्रदेश) की अन्तरिक्ष प्रयोगशाला के प्रमुख थे और इस दौरान उन्होने दो विशेष ग्रन्थ लिखे: ब्राह्मस्फुटसिद्धान्त (सन ६२८ में) और खण्डखाद्यक या खण्डखाद्यपद्धति (सन् ६६५ ई में)।
ये अच्छे वेधकर्ता थे और इन्होंने वेधों के अनुकूल भगणों की कल्पना की है। प्रसिद्ध गणितज्ञ ज्योतिषी, भास्कराचार्य बहुत स्थानों पर इनकी विद्वत्ता की प्रशंसा की है। मध्यकालीन यात्री अलबरूनी ने भी ब्रह्मगुप्त का उल्लेख किया है।
ब्रह्मस्फुटसिद्धांत' उनका सबसे पहला ग्रन्थ माना जाता है जिसमें शून्य का एक अलग अंक के रूप में उल्लेख किया गया है। यही नहीं, बल्कि इस ग्रन्थ में ऋणात्मक (negative) अंकों और शून्य पर गणित करने के सभी नियमों का वर्णन भी किया गया है। ये नियम आज की समझ के बहुत करीब हैं। "ब्रह्मस्फुटसिद्धांत" के साढ़े चार अध्याय मूलभूत गणित को समर्पित हैं। १२वां अध्याय, गणित, अंकगणितीय शृंखलाओं तथा ज्यामिति के बारे में है। १८वें अध्याय, कुट्टक (बीजगणित) में आर्यभट्ट के रैखिक अनिर्धार्य समीकरण (linear indeterminate equation, equations of the form ax − by = c) के हल की विधि की चर्चा है। (बीजगणित के जिस प्रकरण में अनिर्धार्य समीकरणों का अध्ययन किया जाता है, उसका पुराना नाम ‘कुट्टक’ है। ब्रह्मगुप्त ने उक्त प्रकरण के नाम पर ही इस विज्ञान का नाम सन् ६२८ ई. में ‘कुट्टक गणित’ रखा। ब्रह्मगुप्त ने द्विघातीय अनिर्धार्य समीकरणों (Nx2 + 1 = y2) के हल की विधि भी खोज निकाली। इनकी विधि का नाम चक्रवाल विधि है। गणित के सिद्धान्तों का ज्योतिष में प्रयोग करने वाला वह प्रथम व्यक्ति था। उनके ब्राह्मस्फुटसिद्धान्त के द्वारा ही अरबों को भारतीय ज्योतिष का पता लगा। अब्बासिद ख़लीफ़ा अल-मंसूर (७१२-७७५ ईस्वी) ने बग़दादकी स्थापना की और इसे शिक्षा के केन्द्र के रूप में विकसित किया। उसने उज्जैन के कंकः को आमंत्रित किया जिसने ब्रह्मस्फुटसिद्धांत के सहारे भारतीय ज्योतिष की व्याख्या की। अब्बासिद के आदेश पर अल-फ़ज़री ने इसका अरबी भाषा में अनुवाद किया।

ब्रह्मगुप्त ने किसी वृत्त के क्षेत्रफल को एक समान क्षेत्रफल वाले वर्ग से स्थानान्तरित करने का भी यत्न किया।
ब्रह्मगुप्त ने पृथ्वी की परिधि ज्ञात की थी, जो आधुनिक मान के निकट है।
ब्रह्मगुप्त पाई (pi) (३.१४१५९२६५) का मान १० के वर्गमूल (३.१६२२७७६६) के बराबर माना।
ब्रह्मगुप्त अनावर्त वितत भिन्नों के सिद्धांत से परिचित थे। इन्होंने एक घातीय अनिर्धार्य समीकरण का पूर्णाकों में व्यापक हल दिया, जो आधुनिक पुस्तकों में इसी रूप में पाया जाता है और अनिर्धार्य वर्ग समीकरण, K y2 + 1 = x2, को भी हल करने का प्रयत्न किया।
ब्रह्मगुप्त का सबसे महत्वपूर्ण योगदान चक्रीय चतुर्भुज पर है। उन्होने बताया कि चक्रीय चतुर्भुज के विकर्ण परस्पर लम्बवत होते हैं। ब्रह्मगुप्त ने चक्रीय चतुर्भुज के क्षेत्रफल निकालने का सन्निकट सूत्र (approximate formula) तथा यथातथ सूत्र (exact formula) भी दिया है।
चक्रीय चतुर्भुज के क्षेत्रफल का सन्निकट सूत्र:
 

चक्रीय चतुर्भुज के क्षेत्रफल का यथातथ सूत्र:
 
जहाँ t = चक्रीय चतुर्भुज का अर्धपरिमाप तथा p, q, r, s उसकी भुजाओं की नाप है। हेरोन का सूत्र, जो एक त्रिभुज के क्षेत्रफल निकालने का सूत्र है, इसका एक विशिष्ट रूप है।
===================स्वदेशी अपनाये 
बाबा रामदेव भारतीय संस्कृति को बचाने के लिए ५०० आचार्यकुलम खोल रहे हैं जिसमे लगभग १०००० करोड़ का निवेश होगा . https://www.youtube.com/watch?v=XcC-62kAnUg


==========================================================
लंदन का प्रसिद्ध सेंट जेम्स स्कूल .इस विद्यालय का लगभग हर विद्यार्थी संस्कृत भाषा का अध्ययन करता है . इस विद्यालय के अधयापकों से पूछने पर कि आप अपने स्कूल में संस्कृत क्यों पढातें है तो उनका कहना है कि संस्कृत बोलने से हमारे मस्तिष्क में तंरगे (vibrarations ) उत्पन्न होती है उसके कारण मस्तिष्क कई गुना तेज काम करता है और छात्रों का मानसिक विकास होता है .